Медианы треугольника пересекаются в отношении

Содержание

Свойства [ править | править код ]

Основное свойство [ править | править код ]

Все три медианы треугольника пересекаются в одной точке, которая называется центроидом или центром тяжести треугольника, и делятся этой точкой на две части в отношении 2:1, считая от вершины.

Свойства медиан равнобедренного треугольника [ править | править код ]

В равнобедренном треугольнике две медианы, проведенные к равным сторонам треугольника, равны, а третья медиана одновременно является биссектрисой и высотой. Верно и обратное: если в треугольнике две медианы равны, то треугольник — равнобедренный, а третья медиана одновременно является биссектрисой и высотой угла при своей вершине.

У равностороннего треугольника все три медианы равны.

Свойства оснований медиан [ править | править код ]

  • Теорема Эйлера для окружности девяти точек: основания трёх высот произвольного треугольника, середины трёх его сторон (основания его медиан) и середины трёх отрезков, соединяющих его вершины с ортоцентром, все лежат на одной окружности (так называемой окружности девяти точек).
  • Отрезок, проведенный через основания двух любых медиан треугольника, является его средней линией. Средняя линия треугольника всегда параллельна той стороне треугольника, с которой она не имеет общих точек.
  • Следствие (теорема Фалеса о параллельных отрезках). Средняя линия треугольника равна половине длины той стороны треугольника, которой она параллельна.

Другие свойства [ править | править код ]

  • Если треугольник разносторонний (неравносторонний), то его биссектриса, проведённая из любой вершины, лежит между медианой и высотой, проведёнными из той же вершины.
  • Медиана разбивает треугольник на два равновеликих (по площади) треугольника.
  • Треугольник делится тремя медианами на шесть равновеликих треугольников.
  • Из отрезков, образующих медианы, можно составить треугольник, площадь которого будет равна 3/4 от всего треугольника. Длины медиан удовлетворяют неравенству треугольника.
  • В прямоугольном треугольнике медиана, проведённая из вершины с прямым углом, равняется половине гипотенузы.
  • Большей стороне треугольника соответствует меньшая медиана.
  • Отрезок прямой, симметричный или изогонально сопряжённый внутренней медиане относительно внутренней биссектрисы, называется симедианой треугольника. Три симедианы проходят через одну точку — точку Лемуана.
  • Медиана угла треугольника изотомически сопряжена самой себе.
Читайте также:  Лучший недорогой процессор для ноутбука

  • Трилинейная полярацентроида (точки пересечения трех медиан) — бесконечно удаленная прямая (см. рис.).

Основные соотношения [ править | править код ]

Чтобы вычислить длину медианы, когда известны длины сторон треугольника, применяется теорема Аполлония (выводится через теорему Стюарта или достроением до параллелограмма и использованием равенства в параллелограмме суммы квадратов сторон и суммы квадратов диагоналей):

m a = 2 b 2 + 2 c 2 − a 2 4 , +2c^<2>-a^<2>><4>>>,> m b = 2 a 2 + 2 c 2 − b 2 4 , =<2>+2c^<2>-b^<2>><4>>>,> m c = 2 a 2 + 2 b 2 − c 2 4 , =<2>+2b^<2>-c^<2>><4>>>,> где m a , m b , m c , m_> — медианы к сторонам треугольника a , b , c соответственно.

В частности, сумма квадратов медиан произвольного треугольника составляет 3/4 от суммы квадратов его сторон:

m a 2 + m b 2 + m c 2 = 3 4 ( a 2 + b 2 + c 2 ) +m_^<2>+m_^<2>=<4>>(a^<2>+b^<2>+c^<2>)> .

Обратно, можно выразить длину произвольной стороны треугольника через медианы:

a = 2 3 − m a 2 + 2 m b 2 + 2 m c 2 = 2 ( b 2 + c 2 ) − 4 m a 2 = b 2 2 − c 2 + 2 m b 2 = c 2 2 − b 2 + 2 m c 2 , <3>><2>+2m_^<2>+2m_^<2>>>=<2>+c^<2>)-4m_^<2>>>=<2>><2>>-c^<2>+2m_^<2>>>=<2>><2>>-b^<2>+2m_^<2>>>,> b = 2 3 − m b 2 + 2 m a 2 + 2 m c 2 = 2 ( a 2 + c 2 ) − 4 m b 2 = a 2 2 − c 2 + 2 m a 2 = c 2 2 − a 2 + 2 m c 2 , <2><3>>^<2>+2m_^<2>+2m_^<2>>>=<2>+c^<2>)-4m_^<2>>>=<2>><2>>-c^<2>+2m_^<2>>>=<2>><2>>-a^<2>+2m_^<2>>>,> c = 2 3 − m c 2 + 2 m b 2 + 2 m a 2 = 2 ( b 2 + a 2 ) − 4 m c 2 = b 2 2 − a 2 + 2 m b 2 = a 2 2 − b 2 + 2 m a 2 , <2><3>>^<2>+2m_^<2>+2m_^<2>>>=<2>+a^<2>)-4m_^<2>>>=<2>><2>>-a^<2>+2m_^<2>>>=<2>><2>>-b^<2>+2m_^<2>>>,> где m a , m b , m c ,m_> — медианы к соответствующим сторонам треугольника, a , b , c — стороны треугольника.

Площадь S любого треугольника, выраженная через длины его медиан:

S = 4 3 σ ( σ − m a ) ( σ − m b ) ( σ − m c ) , <3>>)(sigma -m_)>>,> где σ = ( m a + m b + m c ) / 2 +m_)/2> — полусумма длин медиан.

Определение . Медианой треугольника называют отрезок, соединяющий вершину треугольника с серединой противоположной стороны (рис 1).

Читайте также:  Лучшие программы для создания видеоклипов

Поскольку в каждом треугольнике имеется три вершины, то в каждом треугольнике можно провести три медианы.

На рисунке 1 медианой является отрезок BD .

Утверждение 1 . Медиана треугольника делит его на два треугольника равной площади ( равновеликих треугольника).

Доказательство . Проведем из вершины B треугольника ABC медиану BD и высоту BE (рис. 2),

и заметим, что (см. раздел нашего справочника «Площадь треугольника»)

Поскольку отрезок BD является медианой, то

что и требовалось доказать.

Утверждение 2 . Точка пересечения двух любых медиан треугольника делит каждую из этих медиан в отношении 2 : 1 , считая от вершины треугольника.

Доказательство . Рассмотрим две любых медианы треугольника, например, медианы AD и CE , и обозначим точку их пересечения буквой O (рис. 3).

Обозначим середины отрезков AO и CO буквами F и G соответственно (рис. 4).

Теперь рассмотрим четырёхугольник FEDG (рис. 5).

Сторона ED этого четырёхугольника является средней линией в треугольнике ABC . Следовательно,

Сторона FG четырёхугольника FEDG является средней линией в треугольнике AOC . Следовательно,

Отсюда вытекает, что точка O делит каждую из медиан AD и CE в отношении 2 : 1 , считая от вершины треугольника.

Следствие . Все три медианы треугольника пересекаются в одной точке.

Доказательство . Рассмотрим медиану AD треугольника ABC и точку O , которая делит эту медиану в отношении 2 : 1 , считая от вершины A (рис.7).

Поскольку точка, делящая отрезок в заданном отношении, является единственной, то и другие медианы треугольника будут проходить через эту точку, что и требовалось доказать.

Определение . Точку пересечения медиан треугольника называют центроидом треугольника.

Утверждение 3 . Медианы треугольника делят треугольник на 6 равновеликих треугольников (рис. 8).

Доказательство . Докажем, что площадь каждого из шести треугольников, на которые медианы разбивают треугольник ABC , равна площади треугольника ABC. Для этого рассмотрим, например, треугольник AOF и опустим из вершины A перпендикуляр AK на прямую BF (рис. 9).

Свойство медиан треугольника может быть доказано многими способами. Доказательство, опирающееся на свойства параллелограмма и средней линии треугольника, может быть проведено сразу же после изучения соответствующих тем, что позволяет начать использовать свойство медиан треугольника уже с начала 8 класса.

Читайте также:  Модуль произведения двух чисел

(Свойство медиан треугольника)

Медианы треугольника пересекаются и в точке пересечения делятся в отношении 2:1, считая от вершины.

Дано : ABC, AA1, BB1, CC1 — медианы

1) Пусть M — середина отрезка AO, N — середина BO

(то есть AM=OM, BN=ON).

2) Соединим точки M, N, A1 и B1 отрезками.

3) Так как AA1 и BB1 — медианы треугольника ABC, точка A1- середина отрезка BC, B1 — середина AC.

Следовательно, A1B1 — средняя линия треугольника ABC и

Значит, четырёхугольник MNA1B1 — параллелограмм (по признаку).

По свойству диагоналей параллелограмма

из чего следует, что

5) Доказательство того факта, что все медианы треугольника пересекаются в одной точке, будем вести методом от противного.

Предположим, что третья медиана CC1 треугольника ABC пересекает медианы AA1 и BB1 в некоторой точке, отличной от точки O.

Тогда на каждой медиане есть две различные точки, делящие её в отношении 2:1, считая от вершины. Пришли к противоречию.

Таким образом, все три медианы треугольника пересекаются в одной точке и точка пересечения медиан делит каждую из их в отношении 2:1, считая от вершины:

Что и требовалось доказать .

2 Comments

Промогите пожалуйста:
В прямоугольном треугольнике из вершины прямого угла до гипотенузы провели медиану длинной 50см и перпендикуляр 48см. Вычислить периметр.

Медиана, проведённая к гипотенузе, равна её половине. Следовательно, гипотенуза 100 см. Пусть катеты равны x см и y см. По теореме Пифагора x²+y²=100². Площадь треугольника равна половине произведения стороны на высоту, проведённую к этой стороне S=0,5∙100∙48 см², либо половине произведения катетов S=0,5∙x∙y. Отсюда xy=4800.
Решаем систему уравнений: x²+y²=100²; xy=4800. Решения (60;80) (80;60). То есть катеты 60 см и 80 см. Периметр P=60+80+100=240 см.
(Не обязательно доводить решение системы до конца. Достаточно найти x+y. Для этого к 1-му уравнению прибавим удвоенное 2-е, получим
x²+2xy+y²=19600; x+y=140).

“>

Читайте также:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock detector