Метод левых прямоугольников в excel

Перейдем к модификациям метода прямоугольников.

– это формула метода левых прямоугольников.

– это формула метода правых прямоугольников.

Отличие от метода средних прямоугольников заключается в выборе точек не в середине, а на левой и правой границах элементарных отрезков соответственно.

Абсолютная погрешность методов левых и правых прямоугольников оценивается как .

234567891011121314151617 Program pravii; <Метод правых прямоугольников>uses crt;var i,n:integer; a,b,h,x,xb,s:real;function f(x:real):real;begin f:=(1/x)*sin(3.14*x/2); end;beginclrscr;write(‘Введите нижний предел интегрирования ‘); readln(a);write(‘Введите верхний предел интегрирования ‘); readln(b);write(‘Введите количество отрезков ‘); readln(n);h:=(b-a)/n; s:=0; xb:=a;for i:=1 to n dobegin x:=xb+i*h; s:=s+f(x)*h; end; writeln(‘Интеграл равен ‘,s:12:10); readln;

Для того, чтобы вычислить интеграл по формуле правых прямоугольников в Excel, необходимо выполнить следующие действия:

1. Продолжить работу в том же документе, что и при вычислении интеграла по формуле левых прямоугольников.

2. В ячейку D6 ввести текст y1,…,yn.

3. Ввести в ячейку D8 формулу =КОРЕНЬ(B8^4-B8^3+8), скопировать эту формулу методом протягивания в диапазон ячеек D9:D17

4. Ввести в ячейку D18 формулу =СУММ(D7:D17).

5. Ввести в ячейку D19 формулу =B4*D18.

6. Ввести в ячейку D20 текст правых.

В итоге получаем следующее:

Ответ: значение заданного интеграла равно 14,45905.

Для того, чтобы вычислить интеграл по формуле правых прямоугольников в Mathcad, необходимо выполнить следующие действия:

1. Ввести в поле ввода в одной строчке через какое-либо расстояние следующие выражения: a:=0, b:=3.2, n:=10.

2. В следующей строчке ввести формулу с клавиатуры h:=(b-a)/n (обратить внимание на то, что в поле ввода данное выражение сразу преобразуется к стандартному виду).

3. Рядом вывести значение данного выражения, для этого набрать с клавиатуры: h=.

4. Ниже ввести формулу для вычисления подинтегральной функции, для этого с клавиатуры набрать f(x):=, затем открыть панель инструментов "Арифметика", либо воспользовавшись значком , либо следующим способом:

После этого, на панели инструментов "Арифметика" выбрать "Квадратный корень": , затем в появившемся темном квадрате ввести выражение с клавиатуры x^4-x^3+8, перемещение курсора осуществляется стрелками на клавиатуре (обратить внимание на то, что в поле ввода данное выражение сразу преобразуется к стандартному виду).

5. Ниже ввести выражение I1:=0.

6. Ниже ввести выражение pr_p(a,b,n,h,I1):=.

7. Затем выбрать панель инструментов "Программирование" (либо: "Вид"-"Панели инструментов"-"Программирование", либо: значок ).

8. На панели инструментов "Программирование" добавить строку программы: , затем поставить курсор в первый темный прямоугольник и на панели инструментов "Программирование" выбрать "for".

9. В полученной строке, после слова for, встать курсором в первый из прямоугольников и набрать i.

10. Затем выбрать панель инструментов "Матрицы" (либо: "Вид"-"Панели инструментов"-"Матрицы", либо: значок ).

11. Поставить курсор в следующий темный прямоугольник и на панели инструментов "Матрицы" нажать: , где набрать в двух появившихся прямоугольниках соответственно: 1 и n.

12. Поставить курсор в нижестоящий темный прямоугольник и дважды добавить строку программы.

13. После этого вернуть курсор в первый из появившихся прямоугольников и набрать x1, затем нажать "Локальное присвоение" на панели "Программирование": и после этого набрать a+h.

14. Поставить курсор в следующий темный прямоугольник, где набрать I1 присвоить (кнопка "Локальное присвоение") I1+f(x1).

15. Поставить курсор в следующий темный прямоугольник, где набрать a присвоить (кнопка "Локальное присвоение") x1.

16. В следующем темном прямоугольнике добавить строку программы, где в первом из полученных прямоугольников набрать I1 присвоить (кнопка "Локальное присвоение") I1*h (обратить внимание, что знак умножения в поле ввода автоматически превращается в стандартный).

17. В последнем темном прямоугольнике набрать I1.

18. Ниже ввести pr_p(a,b,n,h,I1) и нажать знак =.

19. Для того, чтобы отформатировать ответ, нужно дважды щелкнуть по полученному числу и указать число десятичный мест – 5.

В итоге получаем:

Ответ: значение заданного интеграла равно 14,45905.

Метод прямоугольников безусловно очень удобен при вычислении определенного интеграла. Работа была очень увлекательна и познавательна.

xi+1xi = h = , i = 1, 2, …, n. (2)

На этих подынтервалах строятся прямоугольники, высота их определяется значением функции f(x) в какой либо точке подынтервала.

Если f(xi) определяется для левой границы каждого подынтервала (рис. 2.1), то формула прямоугольников имеет следующий вид:

I1 = (3)

Читайте также:  Мобильный интернет банкинг беларусбанк

и называется формулой левых прямоугольников.

Если f(xi) определяется для правой границы каждого подынтервала (рис. 2), то

I2 = (4)

и называется формулой правых прямоугольников.

Если функция монотонна на отрезке [a, b], то в одном случае получается значение интеграла I с недостатком I1, а в другом – с избытком I2. Более точное значение I получают при усреднении величин:

I = . (5)

Если f(xi) определяется для середины каждого подынтервала, то формула прямоугольников имеет следующий вид:

I3 = (6)

и называется формулой средних прямоугольников.

Точность интегрирования для этих методов приближенно равняется ε ≈ h.

Пример.

С помощью формул левых, правых и средних прямоугольников вычислить , если h = 0,2.

Точное решение:

?Вычисление интеграла методом прямоугольников выполним в таблице Excel (рис. 3, 3-a).

Значения интервала интегрирования [0, 1] соответственно поместить в ячейки B3 и F3. Интервал интегрирования разобьем на 5 подынтервалов (n = 5). Введем значение n в ячейку В2. Шаг интегрирования вычислим в ячейке F2 по формуле

h = h = .

Рис. 3 (Режим решения)

Режим показа формул

I) Для приближенного вычисления интеграла по формуле левых прямоугольников (3) требуется вычислить значения функции f(x) = 3x 2 – 4x в точках (2):

Вычисление значений x, x1, x2, x3, x4, представлено в блоке ячеек B6:B10, а соответствующие им значения функции – в блоке ячеек С6:С10.

Затем следует вычислить их сумму (в ячейке С11) и полученное значение умножить на шаг интегрирования h(в ячейке С12):

∑ = 0-0,68–1,12–1,32-1,28 = -4,4 I = 0,2? (-0,44) = -0,88.

II) Для приближенного вычисления интеграла по формуле правых прямоугольников (4) требуется вычислить значения функции f(x) = 3x 2 – 4x в точках:

Вычисление значений x1, x2, x3, x4, x5 представлено в блоке ячеек Е6:Е10, а соответствующие им значения функции – в блоке ячеек F6:F10.

Затем следует вычислить их сумму (в ячейке F11) и полученное значение умножить на шаг интегрирования h(в ячейке F12):

Приближенное значение интеграла, вычисленное по формуле левых прямоугольников равно -0,88, а по формуле правых прямоугольников равно -1,08.

Их среднее значение ближе к точному, равному -1.

III) Для приближенного вычисления интеграла по формуле средних прямоугольников (5) требуется вычислить значения функции f(x) = 3x 2 – 4x в точках:

(xi-1+ xi)/2 (блок ячеек G6:H12), их сумму (ячейка H11), полученное значение умножить на шаг интегрирования h (ячейка H12).

Разбивая интервал интегрирования на большее число отрезков, например, на 10, можно получить более точное решение (рис. 4).?

xi+1xi = h = , i = 1, 2, …, n.

Так как площадь трапеции равняется полусумме оснований, умноженной на высоту, интеграл приближенно равен сумме площадей всех полученных трапеций:

=

= =

= [f(x) + 2f(x1) + 2f(x2)+…+ + 2f(xn-1) + f(xn)]=

= [f(xa) + 2f(x1) + 2f(x2)+…+ + 2f(xn-1) + f(xb)]=

= [ f(xa) + f(xb) + ]. (7)

Таким образом, формула трапеций имеет вид:

I = . (8)

Точность интегрирования для этого метода приближенно равняется ε ≈ h 2 .

Пример (продолжение). ?Пользуясь формулой трапеций, вычислить при h = 0,2.

Решение. Вычисление интеграла методом трапеций (8) выполним в таблице Excel (рис. 6, 6-а).

∑ = -0,68 -1,12 -1,32 -1,28 = -4,4 I = 0,1·[(0-1)-2·4,4] = -0,98

Режим показа формул

Разбивая интервал интегрирования на большее число отрезков, например, на 10, можно получить более точное решение (рис. 7).

∑ = -0,37 -0,68 -0,93 -1,12 -1,25 -1,32 -1,33 -1,28 -1,17 = -9,45 I = 0,05? [(0 -1) + 2?(-9,45) = -1,00?

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Как то на паре, один преподаватель сказал, когда лекция заканчивалась – это был конец пары: "Что-то тут концом пахнет". 8514 – | 8100 – или читать все.

91.146.8.87 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Метод прямоугольников – это, пожалуй, самый простой метод приближённого вычисления определённого интеграла. И парадокс состоит в том, что по этой причине (видимо) он довольно редко встречается на практике. Неудивительно, что данная статья появилась на свет через несколько лет после того, как я рассказал о более распространённых методах трапеции и Симпсона, где упомянул о прямоугольниках лишь вскользь. Однако на сегодняшний день раздел об интегралах практически завершён и поэтому настало время закрыть этот маленький пробел. Читаем, вникаем и смотрим видео! ….о чём? Об интегралах, конечно =)

Постановка задачи уже была озвучена на указанном выше уроке, и сейчас мы быстренько актуализируем материал:

Читайте также:  Можно ли пить вино на поминках

Рассмотрим интеграл . Он неберущийся. Но с другой стороны, подынтегральная функция непрерывна на отрезке , а значит, конечная площадь существует. Как её вычислить? Приближённо. И сегодня, как вы догадываетесь – методом прямоугольников.

Разбиваем промежуток интегрирования на 5, 10, 20 или бОльшее количество равных (хотя это не обязательно) отрезков, чем больше – тем точнее будет приближение. На каждом отрезке строим прямоугольник, одна из сторон которого лежит на оси , а противоположная – пересекает график подынтегральной функции. Вычисляем площадь полученной ступенчатой фигуры, которая и будет приближённой оценкой площади криволинейной трапеции (заштрихована на 1-м рисунке).

Очевидно, что прямоугольники можно построить многими способами, но стандартно рассматривают 3 модификации:

1) метод левых прямоугольников;
2) метод правых прямоугольников;
3) метод средних прямоугольников.

Оформим дальнейшие выкладки в рамках «полноценного» задания:

Вычислить определённый интеграл приближённо:
а) методом левых прямоугольников;
б) методом правых прямоугольников.

Промежуток интегрирования разделить на равных отрезков, результаты вычислений округлять до 0,001

Решение: признАюсь сразу, я специально выбрал такое малое значение – из тех соображений, чтобы всё было видно на чертеже – за что пришлось поплатиться точностью приближений.

Вычислим шаг разбиения (длину каждого промежуточного отрезка):

Метод левых прямоугольников получил своё называние из-за того,

что высОты прямоугольников на промежуточных отрезках равны значениям функции в левых концах данных отрезков:

Ни в коем случае не забываем, что округление следует проводить до трёх знаков после запятой – это существенное требование условия, и «самодеятельность» здесь чревата пометкой «оформите задачу, как следует».

Вычислим площадь ступенчатой фигуры, которая равна сумме площадей прямоугольников:

Таким образом, площадь криволинейной трапеции: . Да, приближение чудовищно грубое (завышение хорошо видно на чертеже), но и пример, повторюсь, демонстрационный. Совершенно понятно, что, рассмотрев бОльшее количество промежуточных отрезков (измельчив разбиение), ступенчатая фигура будет гораздо больше похожа на криволинейную трапецию, и мы получим лучший результат.

При использовании «правого» метода высОты прямоугольников равны значениям функции в правых концах промежуточных отрезков:

Вычислим недостающее значение и площадь ступенчатой фигуры:

– тут, что и следовало ожидать, приближение сильно занижено:

Запишем формулы в общем виде. Если функция непрерывна на отрезке , и он разбит на равных частей: , то определённый интеграл можно вычислить приближенно по формулам:
– левых прямоугольников;
– правых прямоугольников;
(формула в следующей задаче) – средних прямоугольников,
где – шаг разбиения.

В чём их формальное различие? В первой формуле нет слагаемого , а во второй –

На практике рассчитываемые значения удобно заносить в таблицу:

а сами вычисления проводить в Экселе. И быстро, и без ошибок:

Ответ:

Наверное, вы уже поняли, в чём состоит метод средних прямоугольников:

Вычислить приближенно определенный интеграл методом прямоугольников с точностью до 0,01. Разбиение промежутка интегрирования начать с отрезков.

Решение: во-первых, обращаем внимание, что интеграл нужно вычислить с точностью до 0,01. Что подразумевает такая формулировка?

Если в предыдущей задаче требовалось прОсто округлить результаты до 3 знаков после запятой (а уж насколько они будут правдивы – не важно), то здесь найденное приближённое значение площади должно отличаться от истины не более чем на .

И во-вторых, в условии задачи не сказано, какую модификацию метода прямоугольников использовать для решения. И действительно, какую?

По умолчанию всегда используйте метод средних прямоугольников

Почему? А он при прочих равных условиях (том же самом разбиении) даёт гораздо более точное приближение. Это строго обосновано в теории, и это очень хорошо видно на чертеже:

В качестве высот прямоугольников здесь принимаются значения функции, вычисленные в серединах промежуточных отрезков, и в общем виде формула приближённых вычислений запишется следующим образом:
, где – шаг стандартного «равноотрезочного» разбиения .

Следует отметить, что формулу средних прямоугольников можно записать несколькими способами, но чтобы не разводить путаницу, я остановлюсь на единственном варианте, который вы видите выше.

Вычисления, как и в предыдущем примере, удобно свести в таблицу. Длина промежуточных отрезков, понятно, та же самая: – и очевидно, что расстояние между серединами отрезков равно этому же числу. Поскольку требуемая точность вычислений составляет , то значения нужно округлять «с запасом» – 4-5 знаками после запятой:

Вычислим площадь ступенчатой фигуры:

Читайте также:  Молочный план в кино

Давайте посмотрим, как автоматизировать этот процесс:

Таким образом, по формуле средних прямоугольников:

Как оценить точность приближения? Иными словами, насколько далёк результат от истины (площади криволинейно трапеции)? Для оценки погрешности существует специальная формула, однако, на практике её применение зачастую затруднено, и поэтому мы будем использовать «прикладной» способ:

Вычислим более точное приближение – с удвоенным количеством отрезков разбиения: . Алгоритм решения точно такой же: .

Найдём середину первого промежуточного отрезка и далее приплюсовываем к полученному значению по 0,3. Таблицу можно оформить «эконом-классом», но комментарий о том, что изменяется от 0 до 10 – всё же лучше не пропускать:

В Экселе вычисления проводятся «в один ряд» (кстати, потренируйтесь), а вот в тетради таблицу, скорее всего, придётся сделать двухэтажной (если у вас, конечно, не сверхмелкий почерк).

Вычислим суммарную площадь десяти прямоугольников:

Таким образом, более точное приближение:

Теперь находим модуль разности между двумя приближениями:

Как я уже отмечал в статье Приближённое вычисление определенных интегралов, на практике довольно часто встречается упрощённый подход: поскольку разность больше требуемой точности , то снова удваиваем количество отрезков, находим и разность , которая, очевидно, уже «уложится» в нашу точность: .

Однако существует более эффективный путь решения, основанный на применении правила Рунге, которое утверждает, что при использовании метода средних прямоугольников мы ошибаемся в оценке определённого интеграла менее чем на (! для методов правых и левых прямоугольников правило использовать нельзя!).

В нашем случае: , то есть требуемая точность на самом деле достигнута, и необходимость в вычислении отпадает.

Округляем наиболее точное приближение до двух знаков после запятой и записываем ответ: с точностью до 0,01

Ещё раз – что это значит? Это значит, что площадь криволинейной трапеции гарантированно отличается от найденного приближённого значения 2,59 не более чем на 0,01.

В Примере 2 урока метод трапеций и метод Симпсона я вычислил приближённое значение этого же интеграла методом трапеций. Любознательные читатели могут сравнить полученные здесь и там результаты.

Вернемся ещё к одному маленькому нюансу, который выпал из поля зрения в самом начале урока: обязательно ли в рассматриваемом задании интеграл должен быть неберущимся? Конечно, нет. Приближённые методы вычисления прекрасно работают и для берущихся определённых интегралов. Заключительный школьный, а точнее, техникумовский пример для самостоятельного решения:

Вычислить интеграл приближённо на отрезках разбиения:

1) методом левых прямоугольников;
2) методом правых прямоугольников;
3) методом средних прямоугольников.

Вычислить более точное значение интеграла с помощью формулы Ньютона-Лейбница. Для каждого из трёх случаев найти абсолютную погрешность. Вычисления округлять до 4 знаков после запятой.

Не нужно пугаться такого развёрнутого условия – всё элементарно «перещёлкивается» в Экселе. Напоминаю, что абсолютная погрешность – это модуль разности между точным и приближённым значением. Кстати, обратите внимание на принципиальную разницу: если в предыдущих примерах речь шла лишь об оценке погрешности, то здесь нам будут известны конкретные значения этих погрешностей (т.к. интеграл берётся, и мы достоверно знаем 4 верных цифры после запятой).

Краткое решение и ответ уже, наверное, показались на вашем экране.

И, завершая эту небольшую статьи, хочу отметить, что иногда метод прямоугольников ошибочно называют «плохим», «неточным» и т.п. Ничего подобного! Если уж на то пошло, его корректнее назвать «медленным» методом. Иными словами, чтобы достигнуть определённой точности – нужно рассмотреть бОльшее количество отрезков разбиения по сравнению с более эффективными методом трапеций и ещё более «быстрым» методом Симпсона.

Которые я и предлагаю вам изучить!

Пример 3: Решение: вычислим шаг разбиения:
Заполним расчётную таблицу:

Вычислим интеграл приближённо методом:
1) левых прямоугольников:
;
2) правых прямоугольников:
;
3) средних прямоугольников:
.

Вычислим интеграл более точно по формуле Ньютона-Лейбница:

и соответствующие абсолютные погрешности вычислений:

Ответ:

Автор: Емелин Александр

(Переход на главную страницу)

Профессиональная помощь по любому предмету – Zaochnik.com

Читайте также:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock detector