Момент инерции для кольца

Момент инерции тела относительно какой-либо оси можно найти вычислением. Если вещество в теле распределено непрерывно, то вычисление момента инерции его сводится к вычислению интеграла

, (4.14)

в котором r – расстояние от элемента массы dm до оси вращения.

Момент инерции тонкого однородного стержня относительно перпендикулярной оси. Пусть ось проходит через конец стержня А (рис. 4.4).

Для момента инерции можно написать IA = kml 2 , где l – длина стержня, k – коэффициент пропорциональности. Центр стержня С является его центром масс. По теореме Штейнера IA = IC + m(l/2) 2 . Величину IC можно представить как сумму моментов инерции двух стержней, СА и СВ, длина каждого из которых равна l/2, масса m/2, а следовательно, момент инерции равен Таким образом, IC = km(l/2) 2 . Подставляя эти выражения в формулу для теоремы Штейнера, получим

,

откуда k = 1/3. В результате находим

(4.15)

(4.16)

Момент инерции бесконечно тонкого круглого кольца (окружности). Момент инерции относительно оси Z (рис. 4.5) равен

где R – радиус кольца. Ввиду симметрии IX = IУ.

Формула (4.17) очевидно, дает также момент инерции полого однородного цилиндра с бесконечно тонкими стенками относительно его геометрической оси.

Момент инерции бесконечно тонкого диска и сплошного цилиндра. Предполагается, что диск и цилиндр однородны, т. е. вещество распределено в них с постоянной плотностью. Пусть ось Z проходит через центр диска С перпендикулярно к его плоскости (рис. 4.6). Рассмотрим бесконечно тонкое кольцо с внутренним радиусом r и наружным радиусом r + dr. Площадь такого кольца dS = 2prdr. Его момент инерции найдется по формуле (4.17), он равен dIz = r 2 dm. Момент инерции всего диска определяется интегралом Ввиду однородности диска dm = , где S = pR 2 – площадь всего диска. Вводя это выражение под знак интеграла, получим

(4.18)

Формула (4.18) дает также момент инерции однородного сплошного цилиндра относительно его продольной геометрической оси.

Вычисление момента инерции тела относительно оси часто можно упростить, вычислив предварительно момент инерции его относительно точки. Сам по себе момент инерции тела относительно точки не играет никакой роли в динамике. Он является чисто вспомогательным понятием, служащим для упрощения вычислений. Моментом инерции тела относительно точки О называется сумма произведений масс материальных точек, из которых тело состоит, на квадраты их расстояний R до точки О: q = ΣmR 2 . В случае непрерывного распределения масс эта сумма сводится к интегралу q = ∫R 2 dm. Само собой понятно, что момент θ не следует смешивать с моментом инерции I относительно оси. В случае момента I массы dm умножаются на квадраты расстояний до этой оси, а в случае момента θ – до неподвижной точки.

Рассмотрим сначала одну материальную точку с массой m и с координатами x, у, z относительно прямоугольной системы координат (рис. 4.7). Квадраты расстояний ее до координатных осей Х, Y, Z равны соответственно у 2 + z 2 , z 2 + x 2 , x 2 + у 2 , а моменты инерции относительно тех же осей

Но х 2 + у 2 + z 2 = R 2 , где R – расстояние точки m от начала координат О. Поэтому

Это соотношение справедливо не только для одной материальной точки, но и для произвольного тела, так как тело можно рассматривать как совокупность материальных точек. Таким образом, сумма моментов инерции тела относительно трех взаимно перпендикулярных осей, пересекающихся в одной точке О, равна удвоенному моменту инерции того же тела относительно этой точки.

Момент инерции полого шара с бесконечно тонкими стенками.

Читайте также:  Можно ли подключить музыкальный центр к компьютеру

Сначала найдем момент инерции θ относительно центра шара. Очевидно, он равен θ = mR 2 . Затем применяем формулу (4.19). Полагая в ней ввиду симметрии IX = IY = IZ = I. В результате находим момент инерции полого шара относительно его диаметра

. (4.20)

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Только сон приблежает студента к концу лекции. А чужой храп его отдаляет. 8944 – | 7612 – или читать все.

91.146.8.87 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Приведены формулы моме́нтов ине́рции для ряда массивных твёрдых тел различной формы. Момент инерции массы имеет размерность масса × длину 2 . Он является аналогом массы при описании вращательного движения. Не следует путать его с моментом инерции плоских сечений [ уточнить ] , который используется при расчетах изгибов.

Моменты инерции в таблице рассчитаны для постоянной плотности по всему объекту. Также предполагается, что ось вращения проходит через центр масс, если не указано иное.

Описание Изображение Моменты инерции Комментарии
Тонкая цилиндрическая оболочка с открытыми концами радиуса r и массы m I = m r 2 <displaystyle I=mr^<2>> [1] Предполагается, что толщина корпуса пренебрежимо мала. Этот объект является частным случаем нижеследующего при r1=r2.

Кроме того, точка массы m на конце стержня длиной r имеет тот же момент инерции, а r называется радиусом инерции.

Толстостенная цилиндрическая труба с открытыми концами, внутреннего радиуса r1, внешнего радиуса r2, длиной h и массой m I z = 1 2 m ( r 1 2 + r 2 2 ) <displaystyle I_=<frac <1><2>>mleft(<1>>^<2>+<2>>^<2>
ight)> [1] [2]
I x = I y = 1 12 m [ 3 ( r 2 2 + r 1 2 ) + h 2 ] <displaystyle I_=I_=<frac <1><12>>mleft[3left(<2>>^<2>+<1>>^<2>
ight)+h^<2>
ight]>
или при определении нормированной толщины tn = t/r и полагая r = r2,
тогда I z = m r 2 ( 1 − t n + 1 2 t n 2 ) <displaystyle I_
=mr^<2>left(1-t_+<frac <1><2>>>^<2>
ight)>
При плотности ρ и той же геометрии: I z = 1 2 π ρ h ( r 2 4 − r 1 4 ) <displaystyle I_=<frac <1><2>>pi
ho hleft(<2>>^<4>-<1>>^<4>
ight)>
Сплошной цилиндр радиуса r, высотой h и массы m I z = m r 2 2 <displaystyle I_=<frac <2>><2>>> [1]
I x = I y = 1 12 m ( 3 r 2 + h 2 ) <displaystyle I_=I_=<frac <1><12>>mleft(3r^<2>+h^<2>
ight)>
Это частный случай предыдущего объекта при r1=0. (Примечание: для правориентированной системы координат оси X-Y нужно поменять местами) Тонкий твердый диск радиуса r и массы m I z = m r 2 2 <displaystyle I_=<frac <2>><2>>>
I x = I y = m r 2 4 <displaystyle I_=I_=<frac <2>><4>>>
Это частный случай предыдущего объекта при h=0. Тонкое кольцо радиуса r и массы m I z = m r 2 <displaystyle I_=mr^<2>>
I x = I y = m r 2 2 <displaystyle I_=I_=<frac <2>><2>>>
Это частный случай тора при b=0 (см. ниже), а также частный случай толстостенной цилиндрической трубы с открытыми концами при r1=r2 и h=0. Твёрдый шар радиуса r и массы m I = 2 m r 2 5 <displaystyle I=<frac <2mr^<2>><5>>> [1] Шар можно представить как множество бесконечно тонких твёрдых дисков, радиус которых изменяется от 0 до r. Пустотелая сфера радиуса r и массы m I = 2 m r 2 3 <displaystyle I=<frac <2mr^<2>><3>>> [1] Аналогично твёрдой сфере, пустотелую сферу можно рассматривать как множество бесконечно тонких колец. Твёрдый эллипсоид с полуосями a, b и c, с осью вращения a и массой m I a = m ( b 2 + c 2 ) 5 <displaystyle I_=<frac <2>+c^<2>)><5>>> — Прямой круговой конус радиуса r, высоты h и массы m I z = 3 10 m r 2 <displaystyle I_=<frac <3><10>>mr^<2>> [3]
I x = I y = 3 5 m ( r 2 4 + h 2 ) <displaystyle I_=I_=<frac <3><5>>mleft(<frac <2>><4>>+h^<2>
ight)> [3]
— Твёрдый кубоид с высотой h, шириной w, глубиной d и массой m I h = 1 12 m ( w 2 + d 2 ) <displaystyle I_=<frac <1><12>>mleft(w^<2>+d^<2>
ight)>
I w = 1 12 m ( h 2 + d 2 ) <displaystyle I_=<frac <1><12>>mleft(h^<2>+d^<2>
ight)>
I d = 1 12 m ( h 2 + w 2 ) <displaystyle I_=<frac <1><12>>mleft(h^<2>+w^<2>
ight)>
Для аналогично ориентированного куба с длиной ребра s <displaystyle s> , I C M = m s 2 6 <displaystyle I_=<frac <2>><6>>> . Твёрдый кубоид с высотой D, шириной W, длиной L, массой m и с осью вращения вдоль самой длинной диагонали. I = m ( W 2 D 2 + L 2 D 2 + W 2 L 2 ) 6 ( L 2 + W 2 + D 2 ) <displaystyle I=<frac <2>D^<2>+L^<2>D^<2>+W^<2>L^<2>
ight)><6left(L^<2>+W^<2>+D^<2>
ight)>>> Для куба с длиной ребра s <displaystyle s> , I = m s 2 6 <displaystyle I=<frac <2>><6>>> . Тонкая прямоугольная пластина высоты h, ширины w и массы m I c = m ( h 2 + w 2 ) 12 <displaystyle I_=<frac <2>+w^<2>)><12>>> [1] — Стержень длины L и массы m I c e n t e r = m L 2 12 <displaystyle I_<mathrm
>=<frac <2>><12>>> [1]
Это выражение предполагает, что стержень имеет вид бесконечно тонкой, но жёсткой проволоки. Это частный случай предыдущего объекта для w = L и h = . Тонкая прямоугольная пластина высоты h, ширины w и массы m
(Ось вращения в конце пластины) I e = m h 2 3 + m w 2 12 <displaystyle I_=<frac <2>><3>>+<frac <2>><12>>> — Стержень длины L и массы m
(Ось вращения на конце стержня) I e n d = m L 2 3 <displaystyle I_<mathrm >=<frac <2>><3>>> [1] Это выражение предполагает, что стержень имеет вид бесконечно тонкой, но жёсткой проволоки. Это частный случай предыдущего объекта для h = L и w = . Тороидальная труба радиуса a, радиуса сечения b и массы m. Ось вращения относительно диаметра: 1 8 ( 4 a 2 + 5 b 2 ) m <displaystyle <frac <1><8>>left(4a^<2>+5b^<2>
ight)m> [4]
Ось вращения относительно вертикальной оси: ( a 2 + 3 4 b 2 ) m <displaystyle left(a^<2>+<frac <3><4>>b^<2>
ight)m> [4] — Плоскость многоугольника с вершинами P → 1 <displaystyle <vec
Читайте также:  Лучшие друзья в инстаграм

>_<1>> , P → 2 <displaystyle <vec

>_<2>> , P → 3 <displaystyle <vec

>_<3>> , . P → N <displaystyle <vec

>_> и массой m <displaystyle m> , равномерно распределенной на его объёму, вращающийся относительно оси, перпендикулярной плоскости и проходящей через начало координат.

I = m 6 ∑ n = 1 N − 1 ‖ P → n + 1 × P → n ‖ ( P → n + 1 2 + P → n + 1 ⋅ P → n + P → n 2 ) ∑ n = 1 N − 1 ‖ P → n + 1 × P → n ‖ <displaystyle I=<frac <6>><frac <sum limits _^|<vec

>_ imes <vec

>_|(<vec

>_^<2>+<vec

>_cdot <vec

>_+<vec

>_^<2>)><sum limits _^|<vec

>_ imes <vec

>_|>>>

— Бесконечный диск с нормально распределенной вокруг осей вращения массой по двум координатам

(т.е. ρ ( x , y ) = m 2 π a b e − ( ( x / a ) 2 + ( y / b ) 2 ) / 2 <displaystyle
ho (x,y)=< frac <2pi ab>>,e^<-((x/a)^<2>+(y/b)^<2>)/2>>

где: ρ ( x , y ) <displaystyle
ho (x,y)> — плотность масс как функция x и y).

Часто мы слышим выражения: «он инертный», «двигаться по инерции», «момент инерции». В переносном значении слово «инерция» может трактоваться как отсутствие инициативы и действий. Нас же интересует прямое значение.

Ежедневная рассылка с полезной информацией для студентов всех направлений – на нашем телеграм-канале.

Что такое инерция

Согласно определению инерция в физике – это способность тел сохранять состояние покоя или движения в отсутствие действия внешних сил.

Если с самим понятием инерции все понятно на интуитивном уровне, то момент инерции – отдельный вопрос. Согласитесь, сложно представить в уме, что это такое. В этой статье Вы научитесь решать базовые задачи на тему «Момент инерции».

Определение момента инерции

Из школьного курса известно, что масса – мера инертности тела. Если мы толкнем две тележки разной массы, то остановить сложнее будет ту, которая тяжелее. То есть чем больше масса, тем большее внешнее воздействие необходимо, чтобы изменить движение тела. Рассмотренное относится к поступательному движению, когда тележка из примера движется по прямой.

Читайте также:  Моноблок msi ag240 2pe

По аналогии с массой и поступательным движением момент инерции – это мера инертности тела при вращательном движении вокруг оси.

Момент инерции – скалярная физическая величина, мера инертности тела при вращении вокруг оси. Обозначается буквой J и в системе СИ измеряется в килограммах, умноженных на квадратный метр.

Как посчитать момент инерции? Есть общая формула, по которой в физике вычисляется момент инерции любого тела. Если тело разбить на бесконечно малые кусочки массой dm, то момент инерции будет равен сумме произведений этих элементарных масс на квадрат расстояния до оси вращения.

Это общая формула для момента инерции в физике. Для материальной точки массы m, вращающейся вокруг оси на расстоянии r от нее, данная формула принимает вид:

Теорема Штейнера

От чего зависит момент инерции? От массы, положения оси вращения, формы и размеров тела.

Теорема Гюйгенса-Штейнера – очень важная теорема, которую часто используют при решении задач.

Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

Теорема Гюйгенса-Штейнера гласит:

Момент инерции тела относительно произвольной оси равняется сумме момента инерции тела относительно оси, проходящей через центр масс параллельно произвольной оси и произведения массы тела на квадрат расстояния между осями.

Для тех, кто не хочет постоянно интегрировать при решении задач на нахождение момента инерции, приведем рисунок с указанием моментов инерции некоторых однородных тел, которые часто встречаются в задачах:

Пример решения задачи на нахождение момента инерции

Рассмотрим два примера. Первая задача – на нахождение момента инерции. Вторая задача – на использование теоремы Гюйгенса-Штейнера.

Задача 1. Найти момент инерции однородного диска массы m и радиуса R. Ось вращения проходит через центр диска.

Разобьем диск на бесконечно тонкие кольца, радиус которых меняется от до R и рассмотрим одно такое кольцо. Пусть его радиус – r, а масса – dm. Тогда момент инерции кольца:

Массу кольца можно представить в виде:

Здесь dz – высота кольца. Подставим массу в формулу для момента инерции и проинтегрируем:

В итоге получилась формула для момента инерции абсолютного тонкого диска или цилиндра.

Задача 2. Пусть опять есть диск массы m и радиуса R. Теперь нужно найти момент инерции диска относительно оси, проходящей через середину одного из его радиусов.

Момент инерции диска относительно оси, проходящей через центр масс, известен из предыдущей задачи. Применим теорему Штейнера и найдем:

Кстати, в нашем блоге Вы можете найти и другие полезные материалы по физике и решению задач.

Надеемся, что Вы найдете в статье что-то полезное для себя. Если в процессе расчета тензора инерции возникают трудности, не забывайте о студенческом сервисе. Наши специалисты проконсультируют по любому вопросу и помогут решить задачу в считанные минуты.

Читайте также:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock detector