Момент инерции полого шара

Момент инерции однородного тела вращения. Моменты инерции конуса, шара.

Линия – ось вращения.

– масса на квадрат радиуса окружности, по которой движется материальная точка.

Все тело мысленно разбиваем на маленькие объемы. Масса этого кусочка .

Твердое тело представляется как совокупность системы точечных масс.

– расстояние, на котором находится точка от оси вращения.

– общий алгоритм определения собственного момента инерции твердого тела, относительно оси проходящей через центр инерции данного тела.

Сплошной шар массы m и радиуса R можно рассматривать как совокупность бесконечно тонких сферических слоев с массами dm , радиусом r, толщиной dr (рис.35).

Рассмотрим малый элемент сферического слоя $delta$ m с координатами x, y, z. Его моменты инерции относительно осей проходящих через центр слоя – $delta$ Jx, $delta$ Jy, $delta$ Jz, равны

Т. е. можно записать (п.26)

Так как для элементов сферического слоя x 2 +y 2 +z 2 =r 2 то

После интегрирования по всему объему слоя получим (п.27)

Так как, в силу симметрии для сферического слоя dJx=dJy=dJz=dJ , а , то Интегрируя по всему объему шара, получаем
Окончательно (после интегрирования) получим, что момент инерции шара относительно оси, проходящей через его центр равен

Разобьём КОНУС на цилиндрические слои ось толщиной dr. Масса такого слоя dm = rpr 2 dr,

где ρ – плотность материала, из которого изготовлен конус. Момент инерции этого слоя dI = dm . r 2 .

Момент инерции всего конуса складывается из моментов инерции всех слоёв:

I = = ρπ r 4 dr = ρR 5 .

Остаётся выразить его через массу всего цилиндра: m = = = R 3 ,

отсюда ρ = , I = = mR 2 .

18. Кинетическая энергия вращающегося твёрдого тела вокруг закреплённой оси. Кинетическая энергия твёрдого тела при плоском движении.

Кинети́ческая эне́ргия — энергия механической системы, зависящая от скоростей движения её точек. Часто выделяют кинетическую энергию поступательного и вращательного движения. Единица измерения в системе СИ — Джоуль. Более строго, кинетическая энергия есть разность между полной энергией системы и её энергией покоя; таким образом, кинетическая энергия — часть полной энергии, обусловленная движением.

Для абсолютно твёрдого тела полную кинетическую энергию можно записать в виде суммы кинетической энергии поступательного и вращательного движения:

19. Уравнения динамики твёрдого тела. Центр тяжести. Условия равновесия твёрдого тела.

– уравнение динамики вращательного движения твердого тела относительно неподвижной оси z, где Mz – момент силы, Lz – момент импульса, Jz – момент инерции тела относительно оси z, – угловое ускорение. F=ma

Читайте также:  Мнимый эллипс как построить

Центром тяжести тела называется точка, относительно которой суммарный момент сил тяжести, действующих на систему, равен нулю. Например, в системе, состоящей из 2 одинаковых масс, соединённых несгибаемым стержнем и помещённой в неоднородное гравитационное поле (например, планеты), центр масс будет находиться в середине стержня, в то время как центр тяжести будет смещён к тому концу стержня, который находится ближе к планете (ибо вес массы P = m·g зависит от гравитационного поля g), и, вообще говоря, даже расположен вне стержня. В постоянном параллельном (однородном) гравитационном поле центр тяжести всегда совпадает с центром масс. Поэтому на практике эти два центра почти совпадают (так как гравитационное поле в некосмических задачах может считаться постоянным в объёме тела).

По этой же причине понятия центр масс и центр тяжести совпадают при использовании этих терминов в геометрии, статистике и тому подобных областях, где применение его по сравнению с физикой можно назвать метафорическим и где неявно предполагается ситуация их эквивалентности (так как реального гравитационного поля нет и не имеет смысла учёт его неоднородности). В этих применениях традиционно оба термина синонимичны, и нередко второй предпочитается просто в силу того, что он более старый

Механическое равновесие – состояние системы, при котором сумма всех сил, действующих на каждую её частицу, равна нулю и алгебраическая сумма моментов всех сил, приложенных к телу относительно оси вращения, проходящей через любую точку O, равна нулю ΣΜO(Fί)=0. Такое определение ограничивает как поступательное движение тела, так и вращательное.

Виды равновесия:

Приведём пример для системы с одной степенью свободы. В этом случае достаточным условием положения равновесия будет являться наличие локального экстремума в исследуемой точке. Как известно, условием локального экстремума дифференцируемой функции является равенство нулю её первой производной. Чтобы определить, когда эта точка является минимумом или максимумом, необходимо проанализировать её вторую производную. Устойчивость положения равновесия характеризуется следующими вариантами:

Дата добавления: 2015-04-24 ; Просмотров: 4141 ; Нарушение авторских прав? ;

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Момент инерции тела относительно какой-либо оси можно найти вычислением. Если вещество в теле распределено непрерывно, то вычисление момента инерции его сводится к вычислению интеграла

Читайте также:  Материнская плата на 2011 сокете

, (4.14)

в котором r – расстояние от элемента массы dm до оси вращения.

Момент инерции тонкого однородного стержня относительно перпендикулярной оси. Пусть ось проходит через конец стержня А (рис. 4.4).

Для момента инерции можно написать IA = kml 2 , где l – длина стержня, k – коэффициент пропорциональности. Центр стержня С является его центром масс. По теореме Штейнера IA = IC + m(l/2) 2 . Величину IC можно представить как сумму моментов инерции двух стержней, СА и СВ, длина каждого из которых равна l/2, масса m/2, а следовательно, момент инерции равен Таким образом, IC = km(l/2) 2 . Подставляя эти выражения в формулу для теоремы Штейнера, получим

,

откуда k = 1/3. В результате находим

(4.15)

(4.16)

Момент инерции бесконечно тонкого круглого кольца (окружности). Момент инерции относительно оси Z (рис. 4.5) равен

где R – радиус кольца. Ввиду симметрии IX = IУ.

Формула (4.17) очевидно, дает также момент инерции полого однородного цилиндра с бесконечно тонкими стенками относительно его геометрической оси.

Момент инерции бесконечно тонкого диска и сплошного цилиндра. Предполагается, что диск и цилиндр однородны, т. е. вещество распределено в них с постоянной плотностью. Пусть ось Z проходит через центр диска С перпендикулярно к его плоскости (рис. 4.6). Рассмотрим бесконечно тонкое кольцо с внутренним радиусом r и наружным радиусом r + dr. Площадь такого кольца dS = 2prdr. Его момент инерции найдется по формуле (4.17), он равен dIz = r 2 dm. Момент инерции всего диска определяется интегралом Ввиду однородности диска dm = , где S = pR 2 – площадь всего диска. Вводя это выражение под знак интеграла, получим

(4.18)

Формула (4.18) дает также момент инерции однородного сплошного цилиндра относительно его продольной геометрической оси.

Вычисление момента инерции тела относительно оси часто можно упростить, вычислив предварительно момент инерции его относительно точки. Сам по себе момент инерции тела относительно точки не играет никакой роли в динамике. Он является чисто вспомогательным понятием, служащим для упрощения вычислений. Моментом инерции тела относительно точки О называется сумма произведений масс материальных точек, из которых тело состоит, на квадраты их расстояний R до точки О: q = ΣmR 2 . В случае непрерывного распределения масс эта сумма сводится к интегралу q = ∫R 2 dm. Само собой понятно, что момент θ не следует смешивать с моментом инерции I относительно оси. В случае момента I массы dm умножаются на квадраты расстояний до этой оси, а в случае момента θ – до неподвижной точки.

Читайте также:  Мониторы для компьютера на алиэкспресс

Рассмотрим сначала одну материальную точку с массой m и с координатами x, у, z относительно прямоугольной системы координат (рис. 4.7). Квадраты расстояний ее до координатных осей Х, Y, Z равны соответственно у 2 + z 2 , z 2 + x 2 , x 2 + у 2 , а моменты инерции относительно тех же осей

Но х 2 + у 2 + z 2 = R 2 , где R – расстояние точки m от начала координат О. Поэтому

Это соотношение справедливо не только для одной материальной точки, но и для произвольного тела, так как тело можно рассматривать как совокупность материальных точек. Таким образом, сумма моментов инерции тела относительно трех взаимно перпендикулярных осей, пересекающихся в одной точке О, равна удвоенному моменту инерции того же тела относительно этой точки.

Момент инерции полого шара с бесконечно тонкими стенками.

Сначала найдем момент инерции θ относительно центра шара. Очевидно, он равен θ = mR 2 . Затем применяем формулу (4.19). Полагая в ней ввиду симметрии IX = IY = IZ = I. В результате находим момент инерции полого шара относительно его диаметра

. (4.20)

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: При сдаче лабораторной работы, студент делает вид, что все знает; преподаватель делает вид, что верит ему. 9508 – | 7341 – или читать все.

91.146.8.87 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

ДИНАМИКА ВРАЩАТЕЛЬНОГО ДВИЖЕНИЯ

5.5. Момент инерции сплошного шара

Сплошной однородный шар можно представить как сумму бесконечно тонких сферических слоев с массами dm (рис. 5.3).

Тогда можно записать, что

.

Объем сферического слоя dV представим в виде: dV = 4 p r 2 dr , где r – радиус сферического слоя.

где R – радиус шара.

Если шар полый, то момент инерции сферического слоя относительно его центра масс (точка С)

Момент инерции сферического слоя относительно диаметра

.

Тогда момент инерции шара.

Моменты инерции некоторых тел однородного состава относительно оси

цилиндр радиуса R

2. Тонкое кольцо

3. Полый цилиндр с внутренним r и внешним R радиусами

Читайте также:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock detector