Мощность на внешнем участке цепи формула

ЗАКОН ОМА ДЛЯ ПОЛНОЙ ЦЕПИ:

, (1)

I- сила тока в цепи; Е- электродвижущая сила источника тока, включённого в цепь; R- сопротивление внешней цепи; r- внутреннее сопротивление источника тока.

МОЩНОСТЬ, ВЫДЕЛЯЕМАЯ ВО ВНЕШНЕЙ ЦЕПИ

. (2)

Из формулы (2) видно, что при коротком замыкании цепи (R®0) и при R®эта мощность равна нулю. При всех других конечных значениях R мощность Р1> 0. Следовательно, функция Р1 имеет максимум. Значение R, соответствующее максимальной мощности, можно получить, дифференцируя Р1 по R и приравнивая первую производную к нулю:

. (3)

Из формулы (3), с учётом того, что R и r всегда положительны, а Е ? 0, после несложных алгебраических преобразований получим:

Следовательно, мощность, выделяемая во внешней цепи, достигает наибольшего значения при сопротивлении внешней цепи равном внутреннему сопротивлению источника тока.

При этом сила тока в цепи (5)

равна половине тока короткого замыкания. При этом мощность, выделяемая во внешней цепи, достигает своего максимального значения, равного

. (6)

Когда источник замкнут на внешнее сопротивление, то ток протекает и внутри источника и при этом на внутреннем сопротивлении источника выделяется некоторое количество тепла. Мощность, затрачиваемая на выделение этого тепла равна

. (7)

Следовательно, полная мощность, выделяемая во всей цепи , определится формулой

= I 2 (R+r) = IE (8)

КОЭФФИЦИЕНТ ПОЛЕЗНОГО ДЕЙСТВИЯ

КОЭФФИЦИЕНТ ПОЛЕЗНОГО ДЕЙСТВИЯ источника тока равен . (9)

Из формулы (8) следует, что

, (10)

т.е. Р1 изменяется с изменением силы тока в цепи по параболическому закону и принимает нулевые значения при I = 0 и при . Первое значение соответствует разомкнутой цепи ( R>> r ), второе – короткому замыканию ( R

ЗАКОН ОМА ДЛЯ ПОЛНОЙ ЦЕПИ:

Читайте также:  Можно ли видеть гостей в инстаграм

, (1)

I- сила тока в цепи; Е- электродвижущая сила источника тока, включённого в цепь; R- сопротивление внешней цепи; r- внутреннее сопротивление источника тока.

МОЩНОСТЬ, ВЫДЕЛЯЕМАЯ ВО ВНЕШНЕЙ ЦЕПИ

. (2)

Из формулы (2) видно, что при коротком замыкании цепи (R®0) и при R®эта мощность равна нулю. При всех других конечных значениях R мощность Р1> 0. Следовательно, функция Р1 имеет максимум. Значение R, соответствующее максимальной мощности, можно получить, дифференцируя Р1 по R и приравнивая первую производную к нулю:

. (3)

Из формулы (3), с учётом того, что R и r всегда положительны, а Е ? 0, после несложных алгебраических преобразований получим:

Следовательно, мощность, выделяемая во внешней цепи, достигает наибольшего значения при сопротивлении внешней цепи равном внутреннему сопротивлению источника тока.

При этом сила тока в цепи (5)

равна половине тока короткого замыкания. При этом мощность, выделяемая во внешней цепи, достигает своего максимального значения, равного

. (6)

Когда источник замкнут на внешнее сопротивление, то ток протекает и внутри источника и при этом на внутреннем сопротивлении источника выделяется некоторое количество тепла. Мощность, затрачиваемая на выделение этого тепла равна

. (7)

Следовательно, полная мощность, выделяемая во всей цепи , определится формулой

= I 2 (R+r) = IE (8)

КОЭФФИЦИЕНТ ПОЛЕЗНОГО ДЕЙСТВИЯ

КОЭФФИЦИЕНТ ПОЛЕЗНОГО ДЕЙСТВИЯ источника тока равен . (9)

Из формулы (8) следует, что

, (10)

т.е. Р1 изменяется с изменением силы тока в цепи по параболическому закону и принимает нулевые значения при I = 0 и при . Первое значение соответствует разомкнутой цепи ( R>> r ), второе – короткому замыканию ( R

Это соотношение выражает закон сохранения энергии для однородного участка цепи.

Работа Δ электрического тока , протекающего по неподвижному проводнику с сопротивлением , преобразуется в тепло Δ, выделяющееся на проводнике.

Читайте также:  Михаил русаков отзывы о курсах
Δ = Δ = 2 Δ.

Закон преобразования работы тока в тепло был экспериментально установлен независимо друг от друга Дж. Джоулем и Э. Ленцем и носит название закона Джоуля–Ленца .

Мощность электрического тока равна отношению работы тока Δ к интервалу времени Δ, за которое эта работа была совершена:

Работа электрического тока в СИ выражается в джоулях (Дж), мощность – в ваттах (Вт).

Рассмотрим теперь полную цепь постоянного тока, состоящую из источника с электродвижущей силой и внутренним сопротивлением и внешнего однородного участка с сопротивлением . Закон Ома для полной цепи записывается в виде

( + ) = .

Умножив обе части этой формулы на Δ = Δ, мы получим соотношение, выражающее закон сохранения энергии для полной цепи постоянного тока:

2 Δ + 2 Δ = Δ = Δст.

Первый член в левой части Δ = 2 Δ – тепло, выделяющееся на внешнем участке цепи за время Δ, второй член Δист = 2 Δ – тепло, выделяющееся внутри источника за то же время.

Выражение Δ равно работе сторонних сил Δст, действующих внутри источника.

При протекании электрического тока по замкнутой цепи работа сторонних сил Δст преобразуется в тепло, выделяющееся во внешней цепи (Δ) и внутри источника (Δист) .

Δ + Δист = Δст = Δ

.

Следует обратить внимание, что в это соотношение не входит работа электрического поля. При протекании тока по замкнутой цепи электрическое поле работы не совершает; поэтому тепло производится одними только сторонними силами , действующими внутри источника. Роль электрического поля сводится к перераспределению тепла между различными участками цепи.

Внешняя цепь может представлять собой не только проводник с сопротивлением , но и какое-либо устройство, потребляющее мощность, например, электродвигатель постоянного тока. В этом случае под нужно понимать эквивалентное сопротивление нагрузки . Энергия, выделяемая во внешней цепи, может частично или полностью преобразовываться не только в тепло, но и в другие виды энергии, например, в механическую работу, совершаемую электродвигателем. Поэтому вопрос об использовании энергии источника тока имеет большое практическое значение.

Читайте также:  Можно ли подсолнечное масло использовать как смазку

Полная мощность источника, то есть работа, совершаемая сторонними силами за единицу времени, равна

Во внешней цепи выделяется мощность

Отношение равное

называется коэффициентом полезного действия источника .

На рис. 1.11.1 графически представлены зависимости мощности источника ист, полезной мощности , выделяемой во внешней цепи, и коэффициента полезного действия η от тока в цепи для источника с ЭДС, равной , и внутренним сопротивлением . Ток в цепи может изменяться в пределах от = 0 (при ) до (при = 0).

Читайте также:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock detector